SUMMER MATH PACKET FOR STUDENTS RISING TO PRECALCULUS

Provided by Cox Math Tutoring

Directions: Complete the following problems without the use of a calculator, unless the problem is accompanied by

a calculator icon:

1. Evaluate each of the following expressions.

1.1.
$$\frac{3}{16} + \frac{1}{8}$$

1.2.
$$\frac{5}{8} - \frac{5}{12} + \frac{1}{6}$$

$$1.3. \qquad \frac{4}{5} \cdot \frac{1}{2} \cdot \frac{3}{4}$$

1.4.
$$\frac{27-35}{4}$$

1.5.
$$\frac{\frac{\frac{1}{5}(-8-9)}{\frac{-1}{3}}}$$

1.6.
$$5^{-1} + 2^{-3}$$

1.7.
$$\left(\frac{3}{2}\right)^{-2} - 2^2$$

1.8.
$$-3 + \frac{3}{7}$$

2. Graph each equation.

2.1.
$$y = -3x + 2$$

$$2.3 \quad y = \sqrt{x}$$

3. Describe the transformations in the graphs from the parent function $f(x) = x^2$

3.1.
$$g(x) = -(x+4)^2 - 3$$

3.2.
$$h(x) = 2(x-1)^2 + 6$$

3.3.
$$m(x) = 3 - (x + 2)^2$$

4. Give the domain and range of the following in interval notation.

D:_____

•

5. Factor completely.

5.1.
$$x^3 - 7x^2 + 6x$$

4.3

5.2.
$$3x^2 - 75$$

4.4

$$5.3. - 8x^3 + 40xy + 112y^2$$

5.4.
$$x^3 - 27$$

5.5.
$$16x^2 - 24x + 9$$

6. Solve by factoring.

6.1.
$$x^2 - 49 = 0$$

6.2.
$$6x^2 - 10x = 4$$

6.3.
$$5x^2 - 37x + 14 = 0$$

$$6.4. 90x^4 - 10x^2 = 0$$

7. Solve by either the quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ or completing the square.

7.1.
$$3x^2 + x - 1 = 0$$

$$7.2. 5x^2 + 8x = -12$$

8. Use the properties of exponents to simplify the following expressions.

8.1.
$$(2y)(4xy^{-3})$$

8.2.
$$\frac{18a^2bc^3}{36ab^3c}$$

8.3.
$$\left(\frac{3}{5}c^2f\right)\left(\frac{4}{3}cd\right)^2$$

8.4.
$$\frac{(2xy^{-1}z^2)^2}{(3x^{-2}y^5z^{-3})^2}$$

9. Write the following in simplest radical form (your answer should not contain decimals).

9.1.
$$-\sqrt{175}$$

9.2.
$$\frac{\sqrt{8x^2}}{\sqrt{2x}}$$

9.3.
$$\sqrt{27} + \sqrt{108}$$

9.4.
$$(\sqrt{8} + \sqrt{12})^2$$

9.5.
$$\sqrt[3]{x^2y^4} \cdot \sqrt[3]{x^5}$$

9.6.
$$\frac{1}{3+\sqrt{5}}$$

10. Write the following complex numbers in simplest form.

10.1.
$$\sqrt{-64x^{12}}$$

10.4.
$$(7-4i)-(-3+6i)$$

10.5.
$$(3 + 4i)(5 - 2i)$$

10.3.
$$\frac{4-3i}{1+2i}$$

11. Find the reference angle for each of the following angles.

11.4.
$$-\frac{11\pi}{4}$$

11.3.
$$\frac{3\pi}{5}$$

12. A point on a terminal side of an angle θ in standard position is given. Find the exact value of each of the trigonometric functions of θ .

13. Name the quadrant in which the angle lies.

13.1.
$$sin\theta > 0$$
, $cos\theta < 0$

13.2.
$$cos\theta > 0$$
, $cot\theta < 0$

14. Find the exact value of the remaining five trigonometric functions of θ .

14.1.
$$sin\theta = \frac{-5}{13}$$
, θ in quadrant III 14.2. $cos\theta = \frac{-1}{4}$, $tan\theta > 0$

14.2.
$$cos\theta = \frac{-1}{4}, tan\theta > 0$$

15. Sketch the graph of the following functions.

15.1.
$$y = 4\cos(x)$$

15.2.
$$y = sin(3x)$$

16. Sketch a right triangle and solve each of the followin	solve each of the following.
--	------------------------------

16.1. The hypotenuse of a right triangle is 5 inches.

If one leg is 2 inches, find the degree measure of each angle.

16.2. At 10 A.M. a building 300 ft. high cast a shadow 50 ft. long. What was the elevation of the sun.